Energy landscape and dynamics of the beta-hairpin G peptide and its isomers: Topology and sequences.

نویسندگان

  • Buyong Ma
  • Ruth Nussinov
چکیده

We have investigated free energy landscape [MM/PBSA + normal modes entropy] of permutations in the G peptide (41-56) from the protein G B1 domain by studying six isomers corresponding to moving the hydrophobic cluster along the beta-strands (toward the turn: T1, AGEWTYDDKTFTVTET; T2, GEDTWDYATFTVTKTE; T3, GEDDWTYATFTVTKTE; toward the end: E1, WTYDDAGETKTFTVT; E2, WEYTGDDATKTETFTV; E3, WTYEGDDATKTETFTV). The free energy terms include molecular mechanics energy, Poisson-Boltzmann electrostatic solvation energy, surface area solvation energy, and conformational entropy estimated by using normal mode analysis. From the wild type to T1, then T3, and finally T2, we see a progressively changing energy landscape, toward a less stable beta-hairpin structure. Moving the hydrophobic cluster outside toward the end region causes a greater change in the energy landscape. alpha-Helical instead of a beta-hairpin structure was the most stable form for the E2 isomer. However, no matter how much the sequence changes, for all variants studied, ideal "native" beta-hairpin topologies remain as minima (regardless of whether global or local) in the energy landscape. In general, we find that the energy landscape is dependent on the hydrophobic cluster topology and on the sequence. Our present study indicates that the key is the relative conformational energies of the different conformations. Changes in the sequence strongly modulate the relative stabilities of topologically similar regions in the energy landscape, rather than redefine the topology space. This finding is consistent with a population redistribution in the process of protein folding. The limited variation of topological space, compared with the number of possible sequence changes, may relate to the observation that the number of known protein folds are far less than the sequential allowance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Native topology or specific interactions: what is more important for protein folding?

Fifty-five molecular dynamics runs of two three-stranded antiparallel beta-sheet peptides were performed to investigate the relative importance of amino acid sequence and native topology. The two peptides consist of 20 residues each and have a sequence identity of 15 %. One peptide has Gly-Ser (GS) at both turns, while the other has d-Pro-Gly ((D)PG). The simulations successfully reproduce the ...

متن کامل

Molecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid

Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...

متن کامل

Effects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations

The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...

متن کامل

Navigation and analysis of the energy landscape of small proteins using the activation-relaxation technique.

The resolution of the protein folding problem has been tied to the development of a detailed understanding of the configurational energy or of the free energy landscape associated with these molecules. Using the activation-relaxation technique and a simplified energy model, we present here a detailed analysis of the energy landscape of 16-residue peptide that folds into a beta-hairpin. Our resu...

متن کامل

Free energy landscape and folding mechanism of a beta-hairpin in explicit water: a replica exchange molecular dynamics study.

The free energy landscape and the folding mechanism of the C-terminal beta-hairpin of protein G is studied by extensive replica exchange molecular dynamics simulations (40 replicas and 340 ns total simulation time), using the GROMOS96 force field and the SPC explicit water solvent. The study reveals that the system preferentially adopts a beta-hairpin structure at biologically important tempera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 2003